Correlation Inequalities and Applications to Vector-Valued Gaussian Random Variables and Fractional Brownian Motion

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractional Brownian motion: stochastic calculus and applications

Fractional Brownian motion (fBm) is a centered self-similar Gaussian process with stationary increments, which depends on a parameter H ∈ (0, 1) called the Hurst index. In this note we will survey some facts about the stochastic calculus with respect to fBm using a pathwise approach and the techniques of the Malliavin calculus. Some applications in turbulence and finance will be discussed. Math...

متن کامل

some maximal inequalities for random variables and applications

in this paper, we extend some famous maximal inequalities and obtain strong laws of largenumbers for arbitrary random variables by use of these inequalities and martingale techniques.

متن کامل

On a quaternion valued Gaussian random variables

In the present note we show that Polya’s type characterization theorem of Gaussian distributions does not hold. This happens because in the linear form, constituted by the independent copies of quaternion random variables, a part of the quaternion coefficients is written on the right hand side and another part on the left side. This gives a negative answer to the question posed in [1]. Mathemat...

متن کامل

On Gaussian Processes Equivalent in Law to Fractional Brownian Motion

We consider Gaussian processes that are equivalent in law to the fractional Brownian motion and their canonical representations. We prove a Hitsuda type representation theorem for the fractional Brownian motion with Hurst index H [ 2 . For the case H> 2 we show that such a representation cannot hold. We also consider briefly the connection between Hitsuda and Girsanov representations. Using the...

متن کامل

A weighted random walk approximation to fractional Brownian motion

The purpose of this brief note is to describe a discrete approximation to fractional Brownian motion. The approximation works for all Hurst indices H , but take slightly different forms for H ≤ 1 2 and H > 1 2 . There are already several discrete approximations to fractional Brownian motion in the literature (see, e.g., [11], [1], [3], [10], [4], [2], [5], [8] for this and related topics), and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Potential Analysis

سال: 2009

ISSN: 0926-2601,1572-929X

DOI: 10.1007/s11118-009-9118-8